Q: An archer standing on a 15° downwards slope shoots an arrow 20° above the horizontal. How far down the slope does the arrow hit if it is shot with a speed of $50 \mathrm{~m} / \mathrm{s}$ from 1.75 m above the ground?

A: One way to answer this question is to write x vs. y equations for the ground and for trajectory of the arrow's and find the intersection. Setting up a coordinate system with the origin at the archer's feet, we the equation of the ground is given by

$$
\begin{aligned}
& y=-x\left(\tan 15^{\circ}\right) \\
& y=-0.2679 x
\end{aligned}
$$

Let us now find equations $x(t)$ and $y(t)$ equations for the position of the arrow as a function of time. Here are the things we know:

$$
\begin{aligned}
& x_{0}=0 \mathrm{~m} \\
& y_{0}=1.75 \mathrm{~m} \\
& v_{x 0}=50 \cos 20^{\circ} \mathrm{m} / \mathrm{s} \approx 46.98 \mathrm{~m} / \mathrm{s} \\
& v_{y 0}=50 \sin 20^{\circ} \mathrm{m} / \mathrm{s} \approx 17.10 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The horizontal position $x(t)$ of the arrow is given by

$$
x=46.98 t
$$

Solving for t, we have

$$
\rightarrow t=\frac{x}{46.98}
$$

Meanwhile, the horizontal position of the arrow $y(t)$ is given by

$$
y=1.75+17.10 t-4.9 t^{2}
$$

By eliminating t from this equation, we get the arrow's trajectory

$$
\begin{aligned}
& y=1.75+17.10\left(\frac{x}{46.98}\right)-4.9\left(\frac{x}{46.98}\right)^{2} \\
& y=1.75+0.364 x-0.00222 x^{2}
\end{aligned}
$$

Finally, we set the vertical positions of the ground and arrow equal to each other, giving

$$
-0.2679 x=1.75+0.364 x-0.00222 x^{2}
$$

We can solve this with the quadratic formula.

$$
x=287 m
$$

